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ABSTRACT-A technique is developed for evaluating the 
reliability of precipitation estimates determined by using 
the gamma distribution. Tables are presented showing the 

probabilities of errow of various magnitudes in precipita- 
tion estimates as a function of record length for selected 
cwes. 

1. INTRODUCTION 

As the use of precipitation probabilities becomes more 
prevalent, the question of the reliability of such proba- 
bilities is increasingly important. The number of obser- 
vations needed to reliably predict precipitation proba- 
bilities is an important consideration. Weisner (1970) 
indicates that from 25 to 50 observations of precipitation 
data are needed to give a “stable” frequency distribution. 

Previous work in this area indicates that rainfall proba- 
bilities can be estimated from the gamma distribution. 
Thom (1958) developed methods of estimating the param- 
eters of this distribution. Friedman and Janes (1957) 
made use of his methods in the estimation of rainfall 
probabilities for Connecticut. Other applications were 
made by Barger et al. (1959) and Strommen and Hors- 
field (1969) in predicting rainfall probabilities for different 
areas of the United States. Greenwood and Durand (1960) 
presented approximations for estimating the maximum 
likelihood parameters for the gamma distribution. Shen- 
ton and Bowman (1970) discuss some properties of Thom’s 
estimatorsfor the gamma distribution. In using the gamma 
distribution, these investigators made little mention of 
the reliability of the precipitation estimates. Friedman 
and Janes (1957) placed confidence intervals on the 
estimates of the parameters for the density function. 
Placing confidence intervals upon the parameters, how- 
ever, does not fix the reliability of the precipitation esti- 
mates. Mooley and Crutcher (1968) investigated the 
number of years of record needed to stabilize the gamma 
parameters in a study of rainfall in India. This report 
sets forth a method for determining the reliability of the 
precipitation estimates as a function of the number of 
observations available for analysis. 

2. PROCEDURE 

Basically, the method consists of the following four 
steps: 

1. Simulate p sets of rainfall data from the gamma distribution 
with known parameters. Each set of data consists of n observations. 

1 This research was supported by the Kentucky Agricultural Experiment Station and 
is published with the approval of the director as Paper No. 71-2123. 

2. Determine parameters of the gamma distribution that best 
fit the n observations for each set of data. This results in p sets of 
parameters. These parameters should equal the original parameters 
except for sampling fluctuation and any bias in the estimation 
procedure. 

3. Determine the amount of rainfall that is expected to be ex- 
ceeded (100--2) percent of the time for each of the p parameter 
sets. This results in p estimates of rainfall at the s-percent proba- 
bility level. 

4. Determine the distribution of the p rainfall estimates at the 
z percent probability level and the reliability of a single estimate 
based on n observations. 

This procedure, with the help of a computer program 
(Bridges and Haan 1971), was repeated for various 
values of the original known gamma parameters and for 
various values of n, the number of observations. A de- 
tailed explanation of each step follows. 

Step 1 
According to Hahn and Shapiro (1967), random values, 

y, that follow the gamma distribution can be simulated 
from 

m 

i=1 
y=-@ In(1-R,) 

where R, is a random number between 0 and 1 and @ and 
m are the scale and shape parameters, respectively, of 
the gama distribution. Initially, @ and m are known and 
are read into the computer program. Using eq (1) and a 
computer-supplied subroutine, Randu (International 
Business Machines 1970), the program generates p sets of 
rainfall data each consisting of n observations. Randu, a 
random number generator that gives values between zero 
and one, is available in the IBM Scientific Subroutine 
Package.2 

Step 2 
For each of the p sets of simulated rainfall, the gamma 

parameters, j3 and m, are found. Thom (1958) gives pro- 
cedures for estimation of these parameters from n ob- 
servations of rainfall. The parameter m is found from the 

2 Mention of a commercial product does not constitute an endorsement. 
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quadratic relationship 

12 In y-1 In y) m2-6m-l=0 
( n  

where 3/ is the arithmetic average of the n observations 
and 2 In y is the sum of the natural logarithms of the 
same n observations. It should be noted that 5 and 
Z In y are based on years when there was enough rain to 
record. This did not affect the estimation in this report, 
for only nonzero values are generated by eq (1). Equation 
(2) was solved by means of the quadratic formula, and 
only the positive roots were used. Once m is found, then 
B is given as - ~ 

p=-. Y 
m (3) 

Equations (2) and (3) are used to estimate the parameters 
of each of the p data sets generated in step 1. 

Step 3 
After estimating the p sets of parameter, one can then 

calculate probabilities for each set of parameter values 
using the incomplete gamma distribution. The gamma 
distribution is given by 

(4) 

where y is the random variable (rainfall depth), p and m 
are the gamma parameters, and r is the gamma function. 
The probability of a given y value is zero, but the prob- 
ability of exceeding y i sone  minus the area from zero to 
y under the distribution function. The area is obtained by 
numerically integrating eq (4) from zero to y. Values of y 
corresponding to probabilities of 95 and 99 percent were 
determined in this manner for each set of simulated data. 

Step 4 
A probability distribution is fit to the rainfall amounts 

a t  the 95- and 99-percent probability levels as determined 
in step 3. We found for most cases, through the chi- 
square test, that the log normal distribution adequately 
describes these data-at-the two probability levels for each 
of the original gamma parameters. Further investigation 
may indicate that some other distribution should be used 
for this step. The true rainfall amount, R, can be evaluated 
from eq (4) with the original, known parameters. If one 
knows the true rainfall amount and the standard de- 
viation of the logarithms of the estimates of R based on the 
simulated data, a degree of reliability can be stated as to 
the probability of an estimate falling outside a specific 
limit' or a specified deviation from the true rainfall amount 
for a given sampIe size. 

If the data truly follow the gamma distribution, the 
shaded area of figure 1 represents the percent chance that 
an error of f d exists in the estimate of the rainfall amount 
that is equaled or exceeded (100-2) percent of the time. 
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FIQURE 1.-Distribution of estimated rainfall amounts at a given 
probability level. 

TABLE 1.-Popration rainfall estimates, R 

Probability level 

95% 99% 
m B 

1 1. 00 3. 10 5. 29 
2 1. 69 8. 02 11.21 
3 0. 26 1. 64 2. 19 

In  this report, p is 100 and n took on values of 10, 20, 
30, 40, 50, and 100 observations. Three sets of p and m 
were used with four replications each, giving a total of 12 
separate computer runs. Beta was set a t  values of 1.00, 
1.69, and 0.26 while m took on values of 1, 2, and 3, re- 
spectively. These parameter values were selected arbi- 
trarily; however, they are representative of values 
typically found in analyzing rainfall in the Eastern 
United States (Strommen and Horsfield 1969). Table 1 
presents the population rainfall at  the 95- and 99-percent 
probability levels for the three sets of gamma parameters 
used. 

3. WALUATION OF ERROR PROBABILITIES 

Curves were prepared relating the number of observa- 
tions to the standard deviation of logarithms of the esti- 
mated rainfall amounts for each probability level, 2. 
Standard deviations were plotted for each replication, and 
a curve connecting the means of the replications was 
drawn. In  some cases, the curve did not follow the mean 
standard deviation exactly because of a lack of sufficient 
replications to stabilize the mean standard deviation and 
present a smooth curve. Figure 2 is a typical example. 

In  all cases, these curves show a definite decrease in the 
standard deviation with an increase in the number of 
observations. The curves show a level of reliability in that 
values based on fewer observations are not as stable as 
evidenced by the larger standard deviations. Probability 
estimates based on fewer observations would not be as 



TABLE 2.-Probabiaity of an error of d or more at 96 and 99 percent 
for m = l  and @=1.00 
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FIQURE 2.-Standard deviation of logarithms of precipitation 
estimates for various sample sizes. 

reliable, although there would be a chance of some error 
no matter how many observations are available. The log 
means and standard deviations for each simulation are 
presented in Bridges and Haan (1971). 

The error probabilities are evaluated by letting Q be a 
rainfall estimate at  probability level 5. In  general, Q will 
not equal the true rainfall amount, R. The probability 
that Q will deviate more than d from R is represented by 
the shaded area of figure 1 and is the probability of an 
error of more than d in the rainfall estimate. This proba- 
bility is determined by selecting some d creating &11 interval 
of R&,d that may or may not contain Q. If we let the prob- 
ability distribution of rainfall estimates at level 2 be de- 
scribed by P(Q), the integral of P(Q) from R-d to R+d is 
the probability that Q is contained in the interval. The 
probability of an error of d or more is one minus the inte- 
grated area. In the case of the log normal distribution, this 
area can be easily evaluated by taking logarithms of R-d 
and R+d, respectively, and converting them to standard 
normal values. The area can be evaluated from any stand- 
ard normal table, and the probability of an error can be cal- 
culated. This procedure was carried out for each set of 0 
and m at  the 95- and 99-percent probabiIity levels, and the 
results are presented in tables 2-4, showing the probability 
of an error greater than d for various sample sizes. The 
population values shown in table 1 can be used to convert 
d to a percentage error. 

From tables 2-4, one can see that as d decreases for any 
sample size the probability of an error increases. This is 
reasonable because the interval in which Q may lie de- 
creases as d gets smalIer. I t  is aIso shown that as n increases 
the probability of an error of d or more decreases for a 
given d. This is due to a decrease in standard deviation as 
the number of observations increases. 

In some cases, the mean of the estimated rainfall 
amounts did not fall within the interval d. These esti- 
mated means were always below the true rainfall amount 
at a particular probability level because of the procedure 
used for estimating the parameters of the gamma distri- 
bution. For short record length, the parameter m was 

A 

n 0.1 0.6 1.0 1.6 2.0 

10 0.931 0.661 0.365 0. 162 0.071 
20 .911 . 571 . 239 . 073 .026 
30 . 880 .447 . 126 .030 .009 
40 .861 . 372 .070 . 011 .002 
50 .848 .331 .049 .006 . 001 

100 .783 . 161 .006 . 000 . 000 

d (99%) 

10 .967 .a35 .668 .502 . 345 
20 .958 . 792 .587 .396 . 234 
30 .946 . 732 .485 .282 . 141 
40 .940 . 704 .435 . 223 .091 
50 . 933 .670 . .383 . 178 - 067 

100 .919 .609 .299 . 114 .037 

TABLE 3.--Sarne as table d except m=%and @=1.69 

d (96%) 

n 0.6 1.0 2.0 3.0 4.0 

10 0.827 0.658 0.353 0. 137 0.038 
20 . 756 . 529 . 191 .044 . 010 
30 .677 .400 .083 . 010 . 001 
40 .625 . 323 .044 .004 . 000 
50 .587 . 271 .025 . 001 . 000 

100 .446 . %27 . 003 . 000 . 000 

10 .a91 . 782 .564 . 357 . 185 
20 .834 .672 . 382 . 169 . 054J 
30 . 778 .569 . 242 .070 .014 
40 .745 . 514 . 183 .043 .008 
50 . 726 .479 . 145 .025 .003 

100 .617 .315 . 044 .003 . 000 

TABLE 4.--Same as table d except m=S and S=0.%6 

d (96%) 

n 0.1 0.2 0.3 0.6 1.0 

10 0. 795 0.600 0. 424 0. 165 0. 008 
20 .691 . 421 . 220 .037 . 000 
30 . 632 .333 . 140 .013 . 000 
40 . 582 . 267 .093 ' .006 . 000 
50 . 553 . 231 . 070 .003 . 000 

100 .375 . 072 .007 , . 000 . 000 

d ( W o )  

10 . 826 . 727 .597 .364 . 051 
20 .798 .606 .434 ' . 181 .008 
30 . 750 . 521 . 330 . 097 .002 
40 . 714 . 460 . 264 .059 . 001 
50 .681 . 409 .211 . 035 . 000 

100 .554 . 233 . 070 .003 . 000 
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FIGURE 3.-Estimated gamma parameter, A, for various sample FIGURE 4.--Estimated gamma parameter, b, for various sample 
sizes. sizes. 

A 
always high and 6 was always low. Only when n ap- 
proached 100 did the estimated parameters (B and m) 
closely approximate the initial ones. This demonstrates 
that the procedure for estimating the parameters is biased. 
Shenton and Bowman (1970) and Bowman and Shenton 
(1970) discuss the bias in Thom’s procedure for estimating 
the parameters of the gamma distribution. Figures 3 and 
4 show the bias in m and as a function of n for one set 
of parameters. Bowman and Shenton (1968) present the 
following approximate relationship for estimating the bias 
in the parameter m when the method of maximum likeli- 
hood is used: 

A A 

2 1  13 3m--+- m+- m3 
A 3 9 405 

n-3 forn24, m 2 l  E(m-m) = 

( 5 )  
A 

where E (m-m) is the expected bias with an error of less 
than 1.4 percent. The results of using this relationship for 
.estimating the bias are shown in figure 3 and indicate that 
the simulated results agree well with the results expected 
from Bowman and Shenton’s relationship. For small values 
of m (i.e., m<0.3), there is considerable bias in m from 
eq (2) even for samples as large as 150 observations 
(Bowman and Shenton 1970). 

A 

4. DISCUSSION OF RESULTS 

Tables 2 4 ,  showing the probability of an error of d or 
more, present some significant facts to anyone using the 
gamma distribution in making rainfall estimates. The need 
for long record lengths in making probability statements 
can be clearly seen. 

As n is increased for any d, the probability of an error is 
reduced significantly in most cases. It is also noted that 
very precise values of rainfall estimates corresponding to 
a small d require extremely long records. As an example, 
consider the case of m=l  and 8=1 at the 95-percent 
level (table 2). Using the standard procedure for deter- 
mining the parameter of the gamma distribution, one 
would have a 36.5-percent chance of missing the rainfall 
estimate by more than 1 in. if only 10 observations were 
available. This would be reduced to a 12.6-percent chance 
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if 30 observations were available and to a negligible 0.6- 
percent chance if 100 observations were available. Even 
with 30 observations, there is a 44.7-percent chance of 
missing the rainfall estimate by more than 0.5 in. if the 
true distribution is the gamma distribution with m=l 
and B=1. 

Error tables such as tables 2 4  can be produced for 
evaluating the adequacy of any rainfall record. The pro- 
cedure would be to first estimate the gamma parameters 
from the available rainfall data. The parameter estimates 
would then be assumed representative of the population 
and simulations made from this population. Error prob- 
ability tables could then be produced. These tables would 
give the probability of an error of d or more based on the 
given number of observations or record length if the 
rainfall distribution truly followed the gamma distribu- 
tion with the assumed parameters. The probability of a 
given error could then be determined for the available 
record length. Since the true gamma parameters would 
not be known, these probabilities would be approximate 
but would serve as guide in determining if the available 
rainfall record was of sufficient length to meet a particular 
need. 

Finally, since the expected bias in the Thom estimators 
for the parameters of the gamma distribution can be de- 
termined, i t  appears that in future work the parameters 
should be corrected for bias before probabilities are 
estimated. 
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